D. W. COILLET AND S. D. HAMANN

large preponderance of NO_2^+ ions over $H_2NO_3^+$ ions, as there appears to be in pure nitric acid,¹³ then $[NO_2^+] \approx [NO_3^-]$ and we can write

$$[NO_{2}^{+}] = (K_{1}K_{2})^{\frac{1}{2}}[HNO_{3}]/[H_{2}O]^{\frac{1}{2}},$$
(9)

where

$$K_2 = \frac{k_2}{k_{-2}} = \frac{[\text{NO}_2^+][\text{H}_2\text{O}]}{[\text{H}_2\text{NO}_3^+]}.$$
 (10)

The rate of nitration is thus

$$\frac{d[ArNO_2]}{dt} = k_3[NO_2^+][ArH]$$
$$= k_3(K_1K_2)^{\frac{1}{2}}[HNO_3][ArH]/[H_2O]^{\frac{1}{2}}.$$
(11)

This equation implies that the water formed in the nitration should have a retarding effect on the reaction. But it is an experimental fact that small amounts of water have only a slight effect on the rate,² perhaps because water forms a complex with nitric acid. We shall therefore assume that both [HNO₃] and [H₂O] are effectively unchanged during the reaction, and that the first-order rate constant is

$$k_{\text{first}} = \frac{1}{[\text{ArH}]} \frac{\text{d}[\text{ArNO}_2]}{\text{d}t} \propto k_3 (K_1 K_2)^{\frac{1}{2}}.$$
 (12)

In our present experiments we have measured the quantities

$$\Delta V_{\text{zeroth}}^{\dagger} = -RT \left(\frac{\partial \ln k_{\text{zeroth}}}{\partial P} \right)_{T,x}, \tag{13}$$

$$\Delta V_{\text{first}}^{\dagger} = -RT \left(\frac{\partial \ln k_{\text{first}}}{\partial P} \right)_{T,x}.$$
 (14)

It will be seen from (8) and (12) that these apparent volumes of activation are actually composite quantities made up of the following terms :

$$\Delta V_{\text{zeroth}}^{*} = \Delta V_{2}^{*} + \frac{1}{2} \Delta V_{1}, \qquad (15)$$

$$\Delta V_{\text{first}}^{*} = \Delta V_{3}^{*} + \frac{1}{2}\Delta V_{1} + \frac{1}{2}\Delta V_{2}, \qquad (16)$$

where the ΔV^{\ddagger} are volumes of activation * and the ΔV are total volume changes for complete reaction. To interpret the results adequately, we need to separate these terms.

ZEROTH-ORDER REACTIONS

There is no way of measuring ΔV_2^{\pm} or ΔV_1 directly, but we can make a fair estimate of the magnitude of ΔV_2^{\pm} by considering an analogous reaction. Reaction 2 probably occurs by way of a heterolytic fission : ²

$$\sum_{0}^{+} N - OH_2 \rightarrow O = N = O + OH_2,$$
 (17)

which is closely analogous to the rate-determining step in the unimolecular hydrolysis of acetals

$$\begin{array}{c} R_2 \\ C \\ -OHR \end{array} \rightarrow R_2 = C = OR + OHR. \end{array}$$
 (18)

* In the transition-state theory, certain approximations are involved in deriving the relationship $\Delta V^{\ddagger} = -RT(\partial \ln k/\partial P)$. These have been discussed by Benson ¹⁴ and Hamann.¹⁵

2237

CHEMICAL EFFECTS OF PRESSURE

Koskikallio and Whalley ⁶ have found that pressure has only a small influence on the rates of these hydrolyses, ΔV^{\pm} being either zero or slightly positive ($\leq 2 \text{ cm}^3/\text{ mole}$). We may safely assume that ΔV_2^{\pm} will be similarly small and can be neglected. It follows that $\Delta V_{\text{zeroth}}^{\pm} \approx \frac{1}{2} \Delta V_1$. From the values of $\Delta V_{\text{zeroth}}^{\pm}$ in tables 1 and 2 it would thus appear that ΔV_1 (the volume change for the autoprotolysis of nitric acid) must be about $-20 \text{ cm}^3/\text{mole}$, which is close to the value $-23 \text{ cm}^3/\text{mole}$ for the autoprotolysis of water.¹⁶ The large contraction is undoubtedly caused by electrostriction of the liquid around the H₂NO₃⁺ and NO₃⁻ ions.¹⁷

We conclude that the acceleration of the zeroth-order reactions at high pressures arises principally from the enhanced ionization of nitric acid into nitric acidium ions and nitrate ions.

FIRST-ORDER REACTIONS

It is apparent from eqn. (12) and (16) that the increase in autoprotolysis will also tend to accelerate the first-order reactions. But here there are additional effects associated with the subsequent equilibrium 2 and the rate-determining step 3. It is possible, at least in principle, to measure $\Delta V_1 + \Delta V_2$ directly by observing the effect of pressure on the equilibrium,

$2HNO_3 \rightleftharpoons NO_2^+ + NO_3^- + H_2O_3$ (19)

which exists in pure nitric acid.^{13, 18} But the experiments would be difficult and we have not yet attempted them. Instead we have made use of the fact that the equilibrium 2 between $H_2NO_3^+$ and NO_2^+ ions is analogous to that between I_3^- and I^- ions :

$$I_3^- \rightleftharpoons I^- + I_2, \tag{20}$$

for which $\Delta V = +5 \text{ cm}^3/\text{mole}.^{19}$ In the absence of more direct information we have assumed that ΔV_2 also has this value, so that $\Delta V_1 + \Delta V_2 \approx -15 \text{ cm}^3/\text{mole}.$ It follows from the values of $\Delta V_{\text{first}}^{\pm}$ in tables 1 and 2 that $\Delta V_3^{\pm} \approx -15 \text{ cm}^3/\text{mole}.$ Without placing too much reliance on this value, we can be satisfied that the activation step involves a considerable contraction of the system. It is likely that most of the contraction arises from the partial formation of a covalent bond between the attacking ion and the benzene ring, and it is completely analogous to the contraction which is known to occur in $S_N 2$ substitutions ²⁰ (the present reaction is an $S_E 2$ substitution).

We conclude, therefore, that an increase in pressure accelerates the first-order nitrations both because it favours the formation of nitronium ions and because it speeds up the rate at which they attack aromatic compounds.

- 1 Gonikberg and Gavrilova, J. Gen. Chem. U.S.S.R., 1952, 22, 1388.
- ² Hughes, Ingold and Reed, J. Chem. Soc., 1950, 2400. See also: Ingold, Structure and Mechanism in Organic Chemistry (Bell and Sons, London, 1953). de la Mare and Ridd, Aromatic Substitution (Butterworths, London, 1959).
- ³ Brown and Jensen, J. Amer. Chem. Soc., 1958, 80, 2291.
- ⁴ Weissberger, Proskauer, Riddick and Toops, Organic Solvents (Interscience, New York, 1955). ⁵ Perrin, Trans. Faraday Soc., 1938, 34, 144.
- 6 Koskikallio and Whalley, Trans. Faraday Soc., 1959, 55, 809.
- 7 Kolthoff and Robinson, Rec. trav. chim., 1926, 45, 169.
- 8 Zambelli, J. Chem. Soc. Abstr., 1887, 533.
- 9 Bellinger, Friedman, Bauer, Eastes and Bull, Ind. Eng. Chem., 1948, 40, 1320.
- 10 Cordes, Fetter and Happe, J. Amer. Chem. Soc., 1958, 80, 4802.
- 11 Hamann, Physico-Chemical Effects of Pressure (Butterworths, London, 1957), p. 166.

Melander, Nature, 1949, 163, 599; Acta Chem. Scand., 1949, 3, 95; Arkiv. Kemi, 1950, 2, 213.
 ¹³ Gillespie, Hughes and Ingold, J. Chem. Soc., 1950, 2552.

¹⁴ Benson, *Foundations of Chemical Kinetics* (McGraw-Hill, New York, 1960), p. 510.
 ¹⁵ ref. (11), p. 161.
 ¹⁶ Owen and Brinkley, *Chem. Rev.*, 1941, 29, 461.

¹⁷ ref. (11), p. 55; p. 152. ¹⁸ Ingold and Millen, J. Chem. Soc., 1950, 2612. ¹⁹ Ewald and Hamann, Austral. J. Chem., 1956, **9**, 54. ²⁰ ref.(11), p. 177.

PRINTED IN GREAT BRITAIN AT THE UNIVERSITY PRESS ABERDEEN

2238